Game Theoretic Stochastic Energy Coordination under A Distributed Zeroth-order Algorithm
نویسندگان
چکیده
منابع مشابه
Zeroth-order Asynchronous Doubly Stochastic Algorithm with Variance Reduction
Zeroth-order (derivative-free) optimization attracts a lot of attention in machine learning, because explicit gradient calculations may be computationally expensive or infeasible. To handle large scale problems both in volume and dimension, recently asynchronous doubly stochastic zeroth-order algorithms were proposed. The convergence rate of existing asynchronous doubly stochastic zeroth order ...
متن کاملStochastic Zeroth-order Optimization in High Dimensions
We consider the problem of optimizing a high-dimensional convex function using stochastic zeroth-order queries. Under sparsity assumptions on the gradients or function values, we present two algorithms: a successive component/feature selection algorithm and a noisy mirror descent algorithm using Lasso gradient estimates, and show that both algorithms have convergence rates that depend only loga...
متن کاملStochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
In this paper, we introduce a new stochastic approximation (SA) type algorithm, namely the randomized stochastic gradient (RSG) method, for solving an important class of nonlinear (possibly nonconvex) stochastic programming (SP) problems. We establish the complexity of this method for computing an approximate stationary point of a nonlinear programming problem. We also show that this method pos...
متن کاملOrganizational Coordination: A Game-Theoretic View
While several areas of organizational research have benefited from the use of games to study interaction between individuals, one area that has not done so is the study of organizational coordination. This is in spite of the large game-theoretic literature on coordination games and solutions to coordination problems. This paper brings the two approaches together, showing how simple games can be...
متن کاملOn Zeroth-Order Stochastic Convex Optimization via Random Walks
We propose a method for zeroth order stochastic convex optimization that attains the suboptimality rate of Õ(n7T−1/2) after T queries for a convex bounded function f : R → R. The method is based on a random walk (the Ball Walk) on the epigraph of the function. The randomized approach circumvents the problem of gradient estimation, and appears to be less sensitive to noisy function evaluations c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.2423